Changes in twelve homoeologous genomic regions in soybean following three rounds of polyploidy.
نویسندگان
چکیده
With the advent of high-throughput sequencing, the availability of genomic sequence for comparative genomics is increasing exponentially. Numerous completed plant genome sequences enable characterization of patterns of the retention and evolution of genes within gene families due to multiple polyploidy events, gene loss and fractionation, and differential evolutionary pressures over time and across different gene families. In this report, we trace the changes that have occurred in 12 surviving homoeologous genomic regions from three rounds of polyploidy that contributed to the current Glycine max genome: a genome triplication before the origin of the rosids (~130 to 240 million years ago), a genome duplication early in the legumes (~58 million years ago), and a duplication in the Glycine lineage (~13 million years ago). Patterns of gene retention following the genome triplication event generally support predictions of the Gene Balance Hypothesis. Finally, we find that genes in networks with a high level of connectivity are more strongly conserved than those with low connectivity and that the enrichment of these highly connected genes in the 12 highly conserved homoeologous segments may in part explain their retention over more than 100 million years and repeated polyploidy events.
منابع مشابه
Structural and functional divergence of a 1-Mb duplicated region in the soybean (Glycine max) genome and comparison to an orthologous region from Phaseolus vulgaris.
Soybean (Glycine max) has undergone at least two rounds of polyploidization, resulting in a paleopolyploid genome that is a mosaic of homoeologous regions. To determine the structural and functional impact of these duplications, we sequenced two ~1-Mb homoeologous regions of soybean, Gm8 and Gm15, derived from the most recent ~13 million year duplication event and the orthologous region from co...
متن کاملHomoeologous nonreciprocal recombination in polyploid cotton.
Polyploid formation and processes that create partial genomic duplication generate redundant genomic information, whose fate is of particular interest to evolutionary biologists. Different processes can lead to diversification among duplicate genes, which may be counterbalanced by mechanisms that retard divergence, including gene conversion via nonreciprocal homoeologous exchange. Here, we used...
متن کاملCoordinated and fine-scale control of homoeologous gene expression in allotetraploid cotton.
Within polyploid plant species, it has been demonstrated that homoeologous genes (genes duplicated by polyploidy) often display dynamic expression patterns. To determine if chromosomal location plays a role in establishing these expression patterns, we analyzed the relative levels of homoeolog expression among linked genes from 2 locations in the cotton genome. Genes from the region containing ...
متن کاملCharacterization f soybean - - JapOnleus genome based on synteny analysis with Lotus
To apply genomic information of the model legume Lotus japonicus to soybean, the characteristics o'f the soybean genome in reference to the genome ofL. ,J'aponicus were investigated. Macrosynteny between soybean and L. J'qponicus was analyzed by mapping the same cDNA elones on the maps ofboth species by the RFLP method, and by identifying the positions of ortholos,s on the L. J'aponicus map fbr...
متن کاملIndependent ancient polyploidy events in the sister families Brassicaceae and Cleomaceae.
Recent studies have elucidated the ancient polyploid history of the Arabidopsis thaliana (Brassicaceae) genome. The studies concur that there was at least one polyploidy event occurring some 14.5 to 86 million years ago (Mya), possibly near the divergence of the Brassicaceae from its sister family, Cleomaceae. Using a comparative genomics approach, we asked whether this polyploidy event was uni...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Plant cell
دوره 23 9 شماره
صفحات -
تاریخ انتشار 2011